

COMPUTER GRAPHICS [CS521PE] COURSE PLANNER

I. COURSE PURPOSE:-

After the completion of course, the student should be in a position to apply his /her knowledge in 1) Geometrical Transformations in 2-Dimensional and 3-Dimensional perspectives

- 2) Object representations
- 3) Surface detection procedures
- 4) Computer Animations

II. PREREQUISITE:-

- 1. Mathematics Linear algebra in recommended.
- 2. Good programming skills in C
- 3. This class we will teach algorithms, not programming in C.
- 4. Familiarity with the theory and use of coordinate geometry and of linear algebra, such as matrix multiplication.
- 5. A course on "Computer Programming and Data Structures"

III. COURSE OBJECTIVES:-

	structures interact in the design of graphics
1	renderings on color raster graphics devices. The emphasis of the course will be placed on understanding how the various elements that like algebra geometry algorithms and data
1	course will consider methods for modeling 2-D objects and how it generates photorealistic
	This Course provides an introduction to the principles of computer graphics. In particular, the

This course provides an idea on hardware system architecture for computer graphics. This

includes, but it is not limited to: graphics pipeline, fame buffers, and graphic co – processors.

To give idea about basic building blocks of multimedia and a study about how these blocks

together with the current technology and tools

IV. COURSE OUTCOMES:-

3

S.No	Description	Bloom's Taxonomy
		Level
	Students will be able to describe the fundamental algorithms	Knowledge,
1	used in computer graphics and to some extent be able to	Understand
	compare and evaluate them	(Level1, Level2)
2	Students will be able to work and interact, through hands-on experiences, to design, develop, and modify electronically generated imaginary using a wide range of sophisticated graphical tools and techniques.	Apply, Create (Level 3)
3	Students will be able to summarize different hidden surface elimination algorithms and shading techniques used in computer graphics and digital media production.	Evaluate (Level 3)

	Students will be able to explain about the technology necessary	Analyze
4	for creating multimedia content for the web, video, DVD, 2D and	(Lovel 3)
	3D graphics, Sound and programming.	(Level 5)
	Students can apply the knowledge, techniques, skills and modern	
5	tools to become successful professionals in communication and	Apply (Level 3)
	media industries	-

V.COURSE CONTENT:-

UNIT - I Introduction:

Application areas of Computer Graphics, overview of graphics systems, Video -display devices, Raster - scan systems, random scan systems, graphics monitors and work stations and input devices Output primitives: Points and lines, line drawing algorithms, mid - point circle and ellipse algorithms. Filled area primitives: Scan line polygon fill algorithm, boundary - fill and flood - fill algorithms.

UNIT – II 2 - D Geometrical transforms:

Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms transformations between coordinate systems.

2-D Viewing: The viewing pipeline, viewing coordinate reference frame, window to view - port coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus-beck line clipping algorithms, Sutherland –Hodgeman polygon clipping algorithm.

UNIT -III 3-D Object representation:

Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and Bspline curves, Bezier and B-spline surfaces, Basic Illumination models, polygon rendering methods

UNIT –IV

3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.

3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT - V Computer animation:

Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications

Visible surface detection methods:

Classification, back - face detection, depth - buffer, scan - line, depth sorting, BSP - tree methods, area sub- division and octree methods Illumination Models and Surface rendering Methods: Basic illumination models, polygon rendering methods

TEXT BOOKS:

- 1."Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson education.
- 2."Computer Graphics Second edition", Zhigand xiang, Roy Plastock, Schaum's outlines, Tata Mc Graw hill edition.

REFERENCE BOOKS:

- 1."Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 2."Procedural elements for Computer Graphics", David F Rogers, Tata Mc Graw hill, 2nedition.
- 3."Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 4. "Principles of Computer Graphics", Shalini, Govil-Pai, Springer.
- 5. "Computer Graphics", Steven Harrington, TMH
- 6. Computer Graphics, F. S. Hill, S. M. Kelley, PHI.
- 7. Computer Graphics, P. Shirley, Steve Marschner & Others, Cengage Learning.
- 8. Computer Graphics & Animation, M. C. Trivedi, Jaico Publishing House.
- An Integrated Introduction to Computer Graphics and Geometric Modelling, R.Goldman, CRC Press, Taylor&Francis Group.
- 10. Computer Graphics, Rajesh K.Maurya, Wiley India.
- 11. Computer Graphics, Atul P. Godse, Technical Publications

NPTEL Web Course:

1. http://nptel.ac.in/courses/106106090/

NPTEL Video Course:

1. http://nptel.ac.in/courses/106106090/#

UGC-NET Syllabus

Display system, input devise, 2D, geometry, Graphics operation, 3D Graphics, Animation Graphic Standard, Application concepts, Storage Devices, Input Tools, Authoring Tools, Application files

VI.LESSON PLAN:-

S.No	Week	Торіс	Topics to be covered	Link for PPT	Link for PDF	Link for Small Projects/ Numeric als(if any)	Course learni ng outco mes	Teachi Iethodolo gy	Reference
1		Introduction	Introduction to the Course,	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	
2		Application areas of Computer Graphics	Areas were Computer Graphics is used.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	
3	1	Overview of graphics systems, video-display devices	Detailed Explanation about CRT Mechanism	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	T1
4		Raster-scan systems	Explain in detail about the Random Scan Display System.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy YR 1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	
5		Random scan systems	Explain in detail about the Raster Scan Display System.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	
6		Graphics monitors and work stations	Problems on Raster Systems, refresh rate and aspect ratio	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	

						Ź	WPARTING VALUE BASED EDUICATIO	R	
					<u>sharing</u>				
	-				https://driv				
1		Ellipse algorithms	Gathering the Knowledge about how Ellipse Drawing Algorithm and Previous Univ Papers Solved Example	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L1:Rem ember	Chalk & Talk	
1		Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms	Explain about the Polygon and area filling in Raster Systems. Types of Seed Fill Algorithm.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
1		2-D geometrical transforms: Translation	Explain the Baasic 2-D Transformation with derivation	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
1		Scaling, Rotation	Explain the New co- ordinate w.r.t 2D	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	T1
1		Reflection and shear transformation s	Explaining the Combination of 2D Transforms	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
1		Matrix representations and homogeneous coordinates	Explaining the representation of Homogenous System	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		Composite		https://drive.go	<u>https://driv</u> <u>e.goog</u>	Small	L2:Un	Chal	

						V	-	1	
0		transforms	Explain the combination of Transforms and converting to new co- ordinate systems	ogle.com/drive /folders/12ClDp n5r2XOVtUi0v pSwy_YR_1W O00PE?usp=sha ring	le.com/file/ d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Projects/ Numerica ls(if any) Link	derstand	k & Talk	
2		Transformations between coordinate systems	Explain the Transformation and Viewing System.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		2-D viewing: The viewing pipeline, viewing coordinate reference frame	Explain the Viewing co-ordinates and viewing system	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		Window to view-port coordinate transformation, Viewing functions	Explain about Point Clipping, Line Clipping.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		Cohen- Sutherland algorithms	Explain about Line Clipping Alg and University Solved Eg	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy YR 1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		Sutherland – Hodgeman polygon clipping algorithm	Explaining the Line Clipping Algorithm with derivation and Eg. Gathering the Knowledge about Sutherland - Hodgeman Polygon Clipping	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2	3	3-D object	Explain the concepts	https://drive.go	https://driv	Small	L2:Und	Chalk &	

		representation: Polygon surfaces, quadric surfaces, spline representation	about the Representation.	ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Projects/ Numerica ls(if any) Link	erstan d	Talk	
2		Hermite curve, Bezier and B- Spline surfaces		https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		Bezier curve and B-Spline curves	Explain the types of representing the 3DObjects.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
2		Polygon rendering methods, Basic illumination models	Explain the models of highlighting the models.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	T1
3		Revision				Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
3		3-D Geometric transformation s: Translation, rotation	Discussing the various 3-D Basic Transformations	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
3	4	Scaling, reflection and shear transformation s	Derive the Types of 3D Transformations	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	T1
3		Composite transformation s.	Explaining different combination of Transformations	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp	<u>https://driv</u> e.google.com <u>/file/d/1Rf0-</u> <u>uLkwo3Cioa</u>	Small Projects/ Numerica ls(if any)	L2:Und erstan d	Chalk & Talk	

								4	
						5	MPARTING VALUE BASED EDUCATIO	3	
				<u>Swy_YR_1WO</u> 00PE?usp=shari <u>ng</u>	oJwd1ICqAt Vp5GoogU/v iew?usp=shar	Link			
3		3-D viewing: Viewing pipeline	Introduction to the concept of Viewing and explanation on Pipeline	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
3		Viewing coordinates, view volume	Explain the concept of Viewing coordinates systems and derivation	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
3		General projection transforms	Explanation of Projection Transforms and the concept of Clipping.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy YR 1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
3		Clipping	Transforms and the concept of Clipping	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
4		Computer animation: Design of animation sequence	Introduction to the concept of Computer Animation and steps involved	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L2:Und erstan d	Chalk & Talk	
4	5	General computer animation functions	Understanding the concept of animation and the working principle of creating an Animation And explaining the Functions involved.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy YR 1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk	T1
4		Raster animation	Explaining the Involvement of Raster System to perform Animation	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk	

, i	1		1			L		~
					ing			
4		Computer animation languages	Introduction to the concept of Computer Animation and steps involved	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy YR 1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk
4		Key frame systems	Understanding the concept of animation and the working principle of creating an Animation. And explaining the Functions involved.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk
4	s	Motion pecifications	Explaining the Involvement of Raster System to perform Animation	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk
4	Vi	sible surface detection methods: Classification	Explaining the Introduction to VSD and classifying the methods	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk
4	Ι	Back-face detection- Depth-buffer Method	Explaining in detail of the Types of Methods performed with Visible Surface Detection	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk
4		BSP-tree methods	Explain the method with derivation and Eg.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy YR 1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd11CqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk
4		Area sub- division method	Explain the method with derivation and Eg.	https://drive.go ogle.com/drive/f olders/12ClDpn 5r2XOVtUi0vp Swy_YR_1WO 00PE?usp=shari ng	https://driv e.google.com /file/d/1Rf0- uLkwo3Cioa oJwd1ICqAt Vp5GoogU/v iew?usp=shar ing	Small Projects/ Numerica ls(if any) Link	L3:Anal yze	Chalk & Talk

	1			LLE BASED EDVICATION	
5		Revision	Small Projects/ Numerica Is(if any) Link	Anal Ch /ze	alk & Talk

VII.HOW PROGRAM OUTCOMES ARE ASSESSED:-

	Program Outcomes (PO)	Level	y Assessed
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems related to Computer Science and Engineering.	3	Assignment s
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems related to Computer Science and Engineering and reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Assignment s
PO3	Design/development of solutions : Design solutions for complex engineering problems related to Computer Science and Engineering and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.		
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Computer Science and Engineering professional engineering practice.	1	Assignment s
PO7	Environment and sustainability : Understand the impact of the Computer Science and Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	-	

ALESTIN

		HB	
		2 Mar	REMO VALLE BASED EDUCATION
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make	-	
	instructions. and give and receive clear		
PO11	Project management and finance: Demonstrate		
	knowledge and understanding of the engineering and	-	
	management principles and apply these to one's own work,		
	as a member and leader in a team, to manage projects and in		
	multidisciplinary environments.		
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Research

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

Program Specific Outcomes (PSO)		Proficiency Assessed by
PSO1 Foundation of Mathematical Concepts: To use mathematical methodologies to crack problem using suitable mathematical analysis, data structure and suitable algorithm.	3	Lectures, Assignments
PSO2 Foundation of Computer System: The ability to interpret the fundamental concepts and methodology of computer systems. Students can understand the functionality of hardware and software aspects of computer systems.	2	Lectures, Assignments
PSO3 Foundations of Software Development: The ability to grasp the software development lifecycle and methodologies of software systems. Possess competent skills and knowledge of software design process. Familiarity and practical proficiency with a broad area of programming concepts and provide new ideas and innovations towards research.		

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF

	Program Outcomes						Program Specific Outcomes								
	P01	P02	P03	P04	P05	P06	P07	P08	604	PO10	P011	P012	PS01	PSO2	PSO3
CO1	-	-	2	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	1	2	-
CO3	2	-	1	-	3	-	-	-	-	-	-	-	2	-	-
CO4	2	2	-	2	-	1	-	-	-	-	-	-	-	-	-
CO5	1	2	-	-	-	-	-	-	-	-	-	-	1	-	-
AVG	1.4	1.2	0.6	0.4	0.6	0.2	-	-	-	-	-	-	1	0.4	-

DESCRIPTIVE QUESTIONS UNIT-1

Long Answer Questions-

S No	Question	Blooms Taxonomy	Course
5.110	Question	Level	Outcome
1	Explain Raster and Random Scan Displays	Understand	2
2	Explain Briefly About flat panel displays	Knowledge	2
3	Explain Raster and Random Scan Systems	Understand	1
4	Discuss about Graphics Monitors and	Understand	2
4	Workstations	Understand	2
5	List and Explain the Input Devices	Understand	1
6	Describe in CRT in details	Knowledge	2
7	Explain briefly about CRT Monitors	Understand	2
8	Discuss about three dimensional viewing	Analyza	2
0	devices	Anaryze	2
9	Explain how CAD is used in computer	Knowledge	5
,	graphics	Kilowiedge	5
	Explain the following two applications of		
10	computer graphics	Understand	5
	(a) Presentation Graphics(b) Image	Understand	5
	Processing		

Short Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Define Computer Graphics	Knowledge	1
2	List the Application of Computer Graphics	Understand	2
3	Define Refreshing of Screen	Knowledge	1
4	Define Pixel	Knowledge	1
5	Define refresh Buffer	Knowledge	1
6	List out the merits and demerits of DVST	Understand	2
7	Discuss about LCD	Analysis	2
8	Differentiate Emissive and Non – Emissive Displays	Analysis	2
9	List out the merits and demerits of Plasma Panel Display	Understand	2
10	Define Persistence	Knowledge	1

UNIT II

Long Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Discuss about the general point pivot point and scaling	Understand	4
2	Discuss about composite transformations for translation, scaling, rotation	Apply	4
3	Solve the multiplication process of	Analyze	4

	transformation for each of the following		
	transformation for each of the following		
	sequence of operations is commutative		
	(a) Two successive rotations		
4	Discuss 3D - Rotation	Knowledge	5
5	Discuss 3D - Scaling	Knowledge	5

Short Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Define Transformation	Understanding	4
2	Define Translation	Understanding	4
3	Define Scaling	Understanding	4
4	Define Rotation	Understanding	4
5	Define Reflection	Understanding	4

UNIT III

Long Answer Questions-

S.No	Question	Blooms Taxonomy	Course
	Question	Level	Outcome
1	Solve the following: For a Bezier surface		
	patch given by control points[P] find the		
	point on the surface at $u = v = 0.5$		
	[p] = (-3,0,3) (-3,1,1) (-3,1,-1) (-3,0,-3)	Apply	5
	(-1,1,3) (-1,1,1) (-1,1,-1) (-1,1,-3)		
	(1,1,3) $(1,1,1)$ $(1,1,-1)$ $(1,1,-3)$		
	(3,0,3) $(3,1,1)$ $(3,1,-1)$ $(3,0,-3)$		
2	Analyze the procedure to calculate the		
	parameters A,B,C,D using Cramers rule If	Apply	5
Δ	the equation for plane surface is expressed	Арргу	5
	in the form Ax+By+Cz+D=0		
	List and describe polygon table	Knowledge	
2	representation for two adjacent polygon		5
3	surface formed with six edges and five		5
	vertices		
4	Discuss about Bezier and B-Spline surfaces	Knowledge	5
5	Discuss about Hermite Curve generation	Understand	5

Short Answer Questions-

S.No	Question	Blooms Taxonomy	Course
	C C	Level	Outcome
1	Define Quadric surfaces	Understand	5
2	Define Spline	Understand	5
3	Discuss about polygon table	Analysis	5
4	Discuss about Phong Shading	Analysis	5
5	Discuss about Ellipsoid Surfaces	Analysis	5

UNIT IV

Long Answer Questions-

S No. Ouestion	Question	Blooms Taxonomy	Course
5.110	Question	Level	Outcome

		2	9-65
1	Explain A – Buffer method	Apply	5
2	Explain depth sorting method	Knowledge	5
3	Explain the BSP tree method for visible surface detection	Knowledge	5
4	Explain Back face detection method	Knowledge	5
5	Solve the equation of a plane through the points $(2,4,3)$, $(4,4,5)$ and $(8,9,3)$	Knowledge	5

Short Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Define visible surface detection methods	Understand	5
2	Define image space method	Understand	5
3	Define object space method	Understand	5
4	Differentiate image space method and object space method	Knowledge	5
5	 Discuss about the followings: (a) depth field in A – buffer do (b) intensity field in A – buffer do 	Knowledge Analysis	5

UNIT V

Long Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome	
1	Discuss the Advantages of real time animation over frame-by-frame animation	Understand	5	
2	Discuss the drawbacks of real time animation techniques	Knowledge	5	
3	Describe the various ways in which the motions of objects can be specified in an animation system	Understand	5	
4	Discuss about raster animations	Understand	5	
5	Write short notes on computer animation languages	Knowledge	5	

Short Answer Questions-

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Define Computer Animation	Understand	2
2	Discuss about the steps in animation sequence	Understand	3
3	Define frame-by-frame animation works	Understand	4
4	Define Morphing	Understand	2
5	Discuss about the methods of motion specifications	Analysis	5

OBJECTIVE QUESTIONS: UNIT I 1. Which devices provides positional information to the graphics system ? a) Input devices b) Output devices c) Pointing devices d) Both a and c Answer : d 2. The number of pixels stored in the frame buffer of a graphics system is known as a) Resolution b) Depth c) Resolution d) Only a Answer : d 3. The maximum number of points that can be displayed without overlap on a CRT is referred as a) Picture b) Resolution c) Persistence d) Neither b nor c Answer : b _____ stores the picture information as a charge distribution behind the phosphor-coated screen. 4. a) Cathode ray tube b) Direct-view storage tube c) Flat panel displays d) 3D viewing device Answer : b 5. The process of digitizing a given picture definition into a set of pixel-intensity for storage in the frame bu called a) Rasterization b) Encoding c) Scan conversion d) True color system Answer : c 6. In LCD, the refresh rate of the screen is a) 60 frames/sec b) 80 frames/sec c) 30 frames/sec d) 100 frames/sec Answer : a 7.Aspect ratio means a) Number of pixels b) Ratio of vertical points to horizontal points c) Ratio of horizontal points to vertical points d) Both b and c Answer : d

8. The primary output device in a graphics system is_____

a) Scanner

b) Video monitor

c) Neither a nor b

d) Printer

Answer : b

9. Random-scan system mainly designed for

a) Realistic shaded screen

b) Fog effect

c) Line-drawing applications

d) Only b

Answer : c

10. ______ allows screen positions to be selected with the touch of a finger.

a) Touch panels

b) Image scanner

c) Light pen

d) Mouse

Answer : a

11. The device which is designed to minimize the background sound is

a) Microphone

b) Digitizers

c) Data glove

d) Joy stick

Answer : a

12. The quality of a picture obtained from a device depends on

a) Dot size

b) Number of dots per inch

c) Number of lines per inch

d) All of the mentioned

Answer : d

13. Which of the following device is not the input device?

a) Trackball and space ball

b) Data glove

c) Only d

d) Impact printers

Answer : c

14. Which device contains thumbwheel, trackball and a standard mouse ball?

a) Z mouse

b) Joystick

c) Mouse

d) Trackball

Answer : a

15. Virtual reality, CAD, and animations are the application of

a) Z mouse

b) Digitizers

c) Data tabletsd) Image scannersAnswer : a

UNIT II

1. The matrix representation for translation in homogeneous coordinates is

- a) P'=T+P
- b) P'=S*P

c) P'=R*P

d) P'=T*P

Answer : d

2. What is the use of homogeneous coordinates and matrix representation?

a) To treat all 3 transformations in a consistent way

- b) To scale
- c) To rotate
- d) To shear the object

Answer : a

3. If point are expressed in homogeneous coordinates then the pair of (x, y) is represented as

- a) (x', y', z')
- b) (x, y, z)
- c) (x', y', w)
- d) (x', y', w)

Answer : d

4. For 2D transformation the value of third coordinate i.e. w=?

- a) 1
- b) 0
- c) -1

d) Any value

Answer : a

5. We can combine the multiplicative and translational terms for 2D into a single matrix representation by expanding

- a) 2 by 2 matrix into 4*4 matrix
- b) 2 by 2 matrix into 3*3
- c) 3 by 3 matrix into 2 by 2
- d) Only c

Answer : b

6.We translate a two-dimensional point by adding

- a) Translation distances
- b) Translation difference

c) X and Y

d) Only a

Answer : d

7. The basic geometric transformations are

a) Translation

- b) Rotation
- c) Scaling

d) All of the mentioned

Answer : d

8. The original coordinates of the point in polor coordinates are

a) X'=r cos (Φ + Θ) and Y'=r cos (Φ + Θ)

b) X'= $r \cos(\Phi + \Theta)$ and Y'= $r \sin(\Phi + \Theta)$

c) X'=r $\cos(\Phi - \Theta)$ and Y'=r $\cos(\Phi - \Theta)$

d) X'=r $\cos(\Phi + \Theta)$ and Y'=r $\sin(\Phi - \Theta)$

Answer : b

9. If the scaling factors values sx and sy < 1 then

- a) It reduces the size of object
- b) It increases the size of object
- c) It stunts the shape of an object

d) None

Answer : a

10.If the value of sx=1 and sy=1 then

- a) Reduce the size of object
- b) Distort the picture
- c) Produce an enlargement
- d) No change in the size of an object

Answer : d

UNIT III

- 1 Three dimensional computer graphics become effective In the late
- a. 1960
- b. 1980
- c. 1970
- d. 1950

Answer: b

2 A three dimensional object can also be represented using_____.

- a. Method
- b. Equation
- c. Point
- d. None of these

Answer: b

- 3 An_____ can be considered as an extension of spherical surface.
- a. Bezier
- b. Ellipsoid
- c. Shearing
- d. None of these

Answer: b

- 4 _____curve is one of the sp line approximation methods.
- a. Bezier
- b. Ellipsoid
- c. Shearing
- d. None of these

Answer: a

CSE III Yr- I SEM

- 5 A Bezier curve is a polynomial of degree ______ the no of control points used.

- One more than a.
- One less than b.
- Two less than c.
- d. None of these

Answer: b

- 6 The sweep representation of an object refers to the
- 2D representation a.
- b. 3D representation
- Both a & b c.
- None of these d.

Answer: b

- 7 The types of projection are
- Parallel projection and perspective projection a.
- Perpendicular and perspective projection b.
- c. Parallel projection and Perpendicular projection
- None of these d.

Answer: a

- 8 are the three dimensional analogs of quad trees.
- a. Quadric
- b. Octrees
- c. Geometry
- None of these d.
- Answer: b

9

- ____refer to the shapes created by union, intersection and difference of given shapes.
- Wire frame model a.
- Composite transformation b.
- c. Constructive solid geometry methods
- d. None of these

Answer: c

In which projection, the plane normal to the projection has equal angles with these three

- 10 axes
- Wire frame projection a.
- Constructive solid geometry projection b.
- Isometric projection c.
- Perspective projection d.

Answer: c

UNIT IV

- 1 The basic graphical interactions are
- Pointing a.
- b. Positioning
- c. Both a & b
- d. None of the above
 - Answer : c
- 2 is a flexible strip that is used to produce smooth curve using a set of point.

- a. Sp line
- b. Scan-line method
- c. Depth-sorting method
- d. None of these Answer : a
- 3 Cubic sp line are
- a. Simple to compute
- b. Provides continuity of curves
- c. Both a & b
- d. None of these Answer : c
- 4 The parametric form of 3D sp line are
- a. X=f(t), y=g(t), z=h(t)
- b. X=a0,y=b0,z=c0
- c. F(t)=0,g(t)=0,h(t)=0
- d. None of these
 - Answer : a
- 5 The problem of hidden surface are
- a. Removal of hidden surface
- b. Identification of hidden surface
- c. Both a & b
- d. None of these
 - Answer : c
- 6 The algorithm of hidden surface are
- a. Object-space method
- b. Image-space method
- c. Both a & b
- d. None of these

Answer : c

- 7 The method which is based on the principle of comparing objects and parts of objects to each other to find which are visible and which are hidden are called
- a. Object-space method
- b. Image-space method
- c. Surface-space method
- d. Both a & b
 - Answer : a
- 8 Which surface algorithm is based on perspective depth ?
- a. Depth comparison
- b. Z-buffer or depth-buffer algorithm
- c. subdivision method
- d. back-face removal

Answer : b

- A process with the help of which images or picture can be produced in a more
- 9 realistic way is called
- a. Fractals
- b. Quad-tree

- c. Rendering
- d. None of these

Answer : c

- 10 Ray-tracing is an extension of
- a. Ray calling
- b. Ray casting
- c. Ray sampling
- d. Ray coherence
- Answer : b

UNIT – V

- Jason is defining the target audience for an animation project.
- ¹ This is a component of which phase in the process of producing animation?
- a. Pre-production
- b. Animated GIF
- c. Post-Production
- d. Production

Answer : a

- 2 Short films that use stop motion techniques are what type of animation?
- a. Frame-based animation
- b. HTML
- c. Animation
- d. Production

Answer : a

- 3 What is another term to describe vector animation?
- a. Vector
- b. Path animation
- c. Alpha
- d. Animation

Answer : b

- 4 Which type of animation is best suited for creating a flipbook animation?
- a. Frames Per Second
- b. SWF
- c. Frame-based animation
- d. Animation

Answer : c

- 5 The types of computer animation are
- a. 2D computer animation
- b. 3D computer animation
- c. Both a & b
- d. None of these

Answer : c

- 6 Special System designed for some training application are known as ?
- a. Video Display Devices
- b. Simulators
- c. GUI
- d. None of above

Answer : b

- 7 The CAD stands for?
- a. Computer And Data
- b. Commonly Available Data
- c. Computer Aided Drawing
- d. Computer Aided Design Answer : d
- 8 Graphics programmers create images on the screen or printer either as?
- a. Vector images
- b. Bitmapped images
- c. Both (a) and (b)
- d. None of these Answer : a
- 9 Graphics software packages are available for?
- a. Pictures
- b. Charts
- c. Graphics
- d. All of the above
 - Answer : d
 - is the number of points per centimeter that can be plotted
- 10 horizontally and vertically
- a. Aspect Ratio
- b. Pixel Depth
- c. Resolution
- d. Dot Pitch
 - Answer : c

XI. GATE QUESTIONS / UGC - NET:

1. If the Fourier transform of the function f(x, y) is F(m, n), then the Fourier transform of the function f(2x, 2y) is :

- a. 1/4 F(m/2, n/2)
- b. 1/4 F (2m, 2n)
- c. 1/4 F(m, n)
- d. 1/4 F (m/4 , n/4)

Answer : a

- 2. Which of the following statement(s) is (are) true?
- I. Two successive translations are additive.
- II. Two successive rotations are additive.
- III. Two successive scaling operations are multiplicative

a.	I & II
b.	only II
с.	II & III

d. All the above

Answer : d

- 3. Given below are three basic rules:
- I. Squash and Stretch
- II. Slow-in and Slow-out
- III. To stage the action properly
- These rules are applied in case of :
 - a. Rendering
 - b. Morphing
 - c. Animation
 - d. All of the above

Answer : c

- 4. Which of the following categories of languages do not refer to animation languages?
 - a. Graphical languages
 - b. General-purpose languages
 - c. Linear-list notations
 - d. None of the above
 - Answer : d
- 5. Match the following:

List- I List- II a. Tablet, Joystick i Continuous devices b. Light Pen, Touch Screen c. Locator, Keyboard ii. Direct devices d. Data Globe, Sonic Pen a. ii i iv iii b. ii. uiv iii

υ.	1	1 V	m	п
с.	i	ii	iii	iv
d.	iv	iii	ii	i

Answer : d

XII. WEBSITES:

https://www.edx.org/course/computer-graphics-uc-san-diegox-cse167x-3 https://www.edx.org/course/foundations-computer-graphics-uc-berkeleyx-cs-184-1x https://www.coursera.org/learn/interactive-computer-graphics

XIV. EXPERT DETAILS: NA

XV. JOURNALS:

INTERNATIONAL

- 1. ICTACT Journal On Image & Video Processing
- 2. International Journals Of Computer Graphics & Techniques

NATIONAL

1. Inventi Impact : Image & Video Processing

XVI. LIST OF TOPICS FOR STUDENT SEMINARS:

- 1) Alpha compositing
- 2) Anisotropic filtering
- 3) Anti-aliasing
- 4) Axis-aligned bounding box.

XVII. CASE STUDIES / SMALL PROJECTS:

- 1. Using Python how to Plot a bar chart, histogram, pie chart
- 2. Using Python how to do the data analyzing from excel sheet
- 3. Code Design
- 4. Computer Graphics in Automotive Design